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Characterization of damping forces in a vibrating structure has long been an active area of
research in structural dynamics. The most common approach is to use &&viscous damping''
where the instantaneous generalized velocities are the only relevant state variables that a!ect
damping forces. However, viscous damping is by no means the only damping model within
the scope of linear analysis. Any model which makes the energy dissipation functional
non-negative is a possible candidate for a valid damping model. This paper, and its
companion (see pp. 63}88 of this issue), are devoted to developing methodologies for
identi"cation of such general damping models responsible for energy dissipation in
a vibrating structure. This paper considers identi"cation of viscous damping under
circumstances when the actual damping model in the structure is non-viscous. A method is
presented to obtain a full (non-proportional) viscous damping matrix from complex modes
and complex natural frequencies. It is assumed that the damping is &&small'' so that a "rst
order perturbation method is applicable. The proposed method and several related issues
are discussed by considering numerical examples based on a linear array of damped
spring-mass oscillators. It is shown that the method can predict the spatial location of
damping with good accuracy, and also give some indication of the correct mechanism
of damping.
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1. INTRODUCTION

Characterization of damping forces in a vibrating structure has long been an active area of
research in structural dynamics. The demands of modern engineering have led to a steady
increase of interest in recent years. However, in spite of a large amount of research,
understanding of damping mechanisms is still quite primitive. A major reason for this is
that, by contrast with inertia and sti!ness forces, it is not in general clear which state
variables are relevant to determine the damping forces. By far the most common approach is
to assume so-called &&viscous damping'', a linear model in which it is supposed that the
instantaneous generalized velocities are the only relevant state variables that determine
damping. This approach was "rst introduced by Rayleigh [1] via his famous &&dissipation
function'', a quadratic expression for the energy dissipation rate with a symmetric matrix of
coe$cients, the &&damping matrix''. A further idealization, also pointed out by Rayleigh, is to
assume the damping matrix to be a linear combination of the mass and sti!ness matrices.
Rayleigh was quite clear that this idea was suggested for mathematical convenience only,
because it allows the damping matrix to be diagonalized simultaneously with the mass and
sti!ness matrices, preserving the simplicity of uncoupled, real normal modes as in the
undamped case. Since its introduction this model has been used extensively and is now
usually known as &&Rayleigh damping'', &&proportional damping'' or &&classical damping''.
0022-460X/01/210043#19 $35.00/0 ( 2001 Academic Press
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Unfortunately, there is no physical reason why a general system should behave like this.
In fact, practical experience in modal testing shows that most real-life structures do not do
so, as they possess complex modes instead of real normal modes. As Sestieri and Ibrahim
[2] have put it &&2it is ironic that the real modes are in fact not real at all, in that in practice
they do not exist, while complex modes are those practically identi"able from experimental
tests. This implies that real modes are pure abstraction, in contrast with complex modes
that are, therefore, the only reality!'' However, consideration of complex modes in
experimental modal analysis has not been very popular among researchers. In fact, many
publications, for example, references [3}5], discuss how to obtain the &&best'' real normal
modes from identi"ed complex modes.

Complex modes will arise with viscous damping, provided it is non-proportional, as
Rayleigh himself analyzed in some detail. However, the physical justi"cation for viscous
damping is scarcely more convincing than that for Rayleigh damping. Viscous damping is
by no means the only damping model within the scope of linear analysis. Any causal model
which makes the energy dissipation functional non-negative is a possible candidate for
a damping model. In the case of such general linear damping models the question of
&&proportionality'' does not usually arise, and the system will have complex modes.
Woodhouse [6] showed that for light damping, such damping models can be handled in
a very similar way to viscous models, using a "rst order perturbation method based on the
undamped modes and natural frequencies.

In fact, until this work it was far from clear that the standard procedure of experimental
modal analysis actually measured &&modes'' at all when complex results were obtained.
The justi"cation of the method in the standard texts (e.g., Ewins [7]) is based on
assuming viscous damping, and begs the question of how one might tell in practice whether
a viscous model is applicable to a given structure, let alone of how to proceed if a viscous
model is not supported by the measurements. These are the central questions to be
addressed in this study. The earlier work (Woodhouse [6]) showed that, provided damping
is su$ciently light for "rst order perturbation theory to be used, then the expression for
vibration transfer functions in terms of mode shapes and natural frequencies, familiar from
undamped systems, carries over almost unchanged to systems with completely general
linear damping. One simply replaces the mode shapes with corresponding complex modes,
and the natural frequencies with their corresponding complex values. If the system satis"es
reciprocity when driving and observing points are suitably interchanged, then the familiar
result carries over exactly. This result shows that experimental modal analysis can
indeed measure the correct complex modes of a structure, since the pole-"tting strategy
normally used is based on the validity of this transfer function expression. Even if the
system is not reciprocal, correct results can be obtained if the observing point is moved over
the structure while the driving point is kept "xed (but not if the converse procedure is
followed).

There are good arguments to support the principle of reciprocity when the physical
mechanism of damping arises from linear viscoelastic behaviour within some or all of the
material of which the structure is built. The &&correspondence principle'' of linear
viscoelasticity applies to such problems under rather general conditions (see, e.g., Fung [8]),
and since the undamped problem satis"es reciprocity, then the damped one will also do so.
However, the case is less obvious for damping associated with structural joints, often the
dominant source of damping in practice. The mechanisms of such damping are frequently
non-linear when examined in detail, but empirically the overall result frequently satis"es
normal experimental tests of linearity. The question of whether such systems should be
expected to satisfy reciprocity remains open. For the purpose of the present investigation,
reciprocity will be assumed in all cases.
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The results based on "rst order perturbation theory give a "rm basis for further analysis,
to use the details of the measured complex modes to learn more about the underlying
damping mechanisms. There are several general questions of interest:

1. From experimentally determined complex modes can the underlying damping
mechanism be identi"ed? Is it viscous or non-viscous? Can the correct model
parameters be found experimentally?

2. Is it possible to establish experimentally the spatial distribution of damping?
3. Is it possible that more than one damping model with corresponding &&correct'' sets of

parameters may represent the system response equally well, so that the identi"ed
model becomes non-unique?

4. Does the selection of damping model matter from an engineering point of view? Which
aspects of behaviour are wrongly predicted by an incorrect damping model?

This paper and its companion [9] address these questions. The analysis is restricted to
linear systems with light damping: the validity of the "rst order perturbation results is
assumed throughout. The initial aim is to consider what can be learned about these
questions in principle, so procedures will be illustrated by applying them to simulated
transfer functions, with no noise. The issue of how the usefulness of any procedure might be
limited in practice by measurement noise will be deferred to later studies. This paper will
concentrate on the "tting of viscous models to &&measured'' transfer functions, and on
establishing the symptoms by which a non-viscous model might be recognized. In section 2,
the theory of determination of complex frequencies and modes based on the "rst order
perturbation method are brie#y reviewed. In section 3, an algorithm is given for "tting
a non-proportional viscous damping model, using the complex modes and complex
frequencies. In section 4, numerical examples are given to illustrate the "tting procedure.
Some implications of these results for damping identi"cation are summarized in section 5.
In the companion paper [9], the procedures are generalized to some non-viscous models of
damping, and the discussion extended to this more general case.

2. BACKGROUND OF COMPLEX MODES

The equations of motion for free vibration of a viscously damped linear discrete system
with N degrees of freedom can be written as

MyK (t)#Cy5 (t)#Ky(t)"0, (1)

where M, C and K are N]N mass, damping and sti!ness matrices, respectively, and y (t) is
the N]1 vector of the generalized co-ordinates. A harmonic solution of the form
y(t)"z exp [ijt] is sought. Substitution of y(t) in equation (1) yields

!j2Mz#ijCz#Kz"0. (2)

This equation is satis"ed by the jth latent root (complex natural frequency), j
j
and jth latent

vector (mode shape), zj, of the j!matrix problem (see Lancaster [10]), so that

!j2
j
Mz

j
#ij

j
Cz

j
#Kz

j
"0. (3)



46 S. ADHIKARI AND J. WOODHOUSE
Unless C is simultaneously diagonalizable with M and K (conditions for which were derived
by Caughey and O'Kelly [11]), in general j

j
and z

j
will be complex. Procedures to obtain

the complex eigensolutions follow two main routes: the state-space method and
approximate methods in &&N-space''. The state-space method (see Newland [12]), although
exact in nature, requires signi"cant numerical e!ort for obtaining the eigensolutions as the
size of the problem doubles. More signi"cantly, this method also lacks some of the intuitive
simplicity of traditional modal analysis. For these reasons there has been considerable
research e!ort to calculate the complex eigensolutions of non-proportionally damped
structures in N-space. Using "rst order perturbation analysis, Rayleigh [1] considered
approximate methods to determine j

j
and z

j
by assuming the elements of C are small but

otherwise general. Cronin [13] has given a power series expression for eigenvalues
and eigenvectors by using a perturbation method. For later reference, the main results
for calculation of complex modes and frequencies using "rst order perturbation
theory are outlined brie#y. The undamped natural frequencies u

j
and mode shapes x

j
satisfy

Kx
j
"u2

j
Mx

j
for j"1,2, N. (4)

The mode shape vectors are normalized in usual way so that

xT
k
Mx

j
"d

jk
, xT

k
Kx

j
"u2

j
d
jk
, (5)

where d
jk

is the Kroneker delta function and (f)T denotes matrix transpose. Since Mx
j
N form

a complete set of vectors z
j
can be expanded as a linear combination of x

j
. Provided the

entries of the C matrix are all small, the roots of equation (3), j
j
, will be close to those of

equation (4), u
j
, and the corresponding eigenvectors, z

j
, are also expected to be close to x

j
.

Thus, a solution can be tried of the form

z
j
"

N
+
l/1

a(j)
l

x
l

where a(j)
j
"1 and Da( j)

l
D@1 ∀lOj. (6)

Substituting z
j

into equation (3), premultiplying by xT
k

and using the orthogonality
properties of the undamped mode shapes described by equation (5) yields

!j2
j
a(j)
k
#ij

j

N
+
l/1

a( j)
l

C@
kl
#u2

k
a( j)
k
"0, (7)

where C@
kl
"xT

k
Cx

l
are the elements of the damping matrix in modal co-ordinates. For the

case k"j, neglecting the second order terms involving a(j)
l

and C@
kl
, ∀kOl, equation (7)

yields

!j2
j
#ij

j
C@

jj
#u2

j
+0,

or
j
j
+$u

j
#iC@

jj
/2, (8)

which is the approximate expression for the complex natural frequencies. For the case kOj
in (7), again retaining only the "rst order terms, gives

a(j)
k
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. (9)
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Thus, from the assumed expansion (6) the "rst order approximate expression of the complex
eigenvectors is

z
j
+x

j
#i

N
+
k/1
kEj

u
j
C@

kj
(u2

j
!u2

k
)
x
k
. (10)

These results were obtained by Rayleigh [2, see section 102, equations (5) and (6)]. The
above equation shows (up to "rst order approximation) that the real parts of the complex
modes are the same as the undamped modes and that the o!-diagonal terms of the modal
damping matrix are responsible for the imaginary parts.

3. IDENTIFICATION OF THE VISCOUS DAMPING MATRIX

Most of the common methods for experimental determination of the damping
parameters use the proportional damping assumption. A typical procedure can be
described as follows:

1. Measure a set of transfer functions H
ij
(u) at a set of grid points on the structure.

2. Obtain the natural frequencies u
k
by a pole-"tting method.

3. Evaluate the modal half-power bandwidth Du
k
from the frequency response functions,

then the Q-factor Q
k
"u

k
/Du

k
and the modal damping factor f

k
"1/2Q

k
.

4. Determine the modal amplitude factors a
k
to obtain the mode shapes, z

k
.

5. Finally, reconstruct some transfer functions to verify the accuracy of the evaluated
parameters.

Such a procedure does not provide reliable information about the nature or spatial
distribution of the damping, though the reconstructed transfer functions may match the
measured ones well.

The next stage, followed by many researchers, is to attempt to obtain the full viscous
damping matrix from the experimental measurements. Methods can be divided into two
basic categories: (a) damping identi"cation from modal testing and analysis [14}17] and
(b) direct damping identi"cation from the forced response measurements [18, 4, 19]. All
these methods are based on the assumption that the damping mechanism of the structure is
viscous, and their e$cacy when the damping mechanism is not viscous is largely
unexplored. Here a method is proposed to obtain the full non-proportional viscous
damping matrix from complex modal data, in a way which will generalize very naturally to
the "tting of non-viscous damping models in the companion paper [9]. The perturbation
expression from the previous section is used as the basis of the "tting procedure, and it is
assumed that the damping is su$ciently light to justify this.

Approximate complex natural frequencies and mode shapes for a system with light
viscous damping can be obtained from the expressions given in equations (8) and (10). Write

z(
j
"u(

j
#iv(

j
, (11)

where z(
j
3CN is the measured jth complex mode, and u;

j
, v;

j
are both real. Suppose that the

number of modes to be considered in the study is m: in general mON, usually N*m. If the
measured complex mode shapes are consistent with a viscous damping model then from
equation (8) the real part of each complex natural frequency gives the undamped natural
frequency:

u9
j
"R(j4

j
), (12)
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where j4
j

denotes the jth complex natural frequency measured from the experiment.
Similarly, from equation (10), the real part of each complex mode u(

j
immediately gives the

corresponding undamped mode and the mass orthogonality relationship (5) will be
automatically satis"ed. Now, from equation (10), expand the imaginary part of z(

j
as a linear

combination of u(
j
:

v(
j
"

m
+
k/1

B
kj
u(
k

where B
kj

(u9 2
j
!u9 2

k
)"u9

j
C@

kj
. (13)

With N*m this relation cannot be satis"ed exactly in general. Then the constants
B
kj

should be calculated such that the error in representing v(
j
by such a sum is minimized.

Note that in the above sum the k"j term has been included although in the original sum in
equation (10) this term was absent. This is done to simplify the mathematical formulation to
be followed, and has no e!ect on the result. The interest lies in calculating C@

kj
from

B
kj

through the relationship given by the second part of equation (13), and indeed when
k"j then C@

kj
"0. The diagonal terms C@

jj
are instead obtained from the imaginary part of

the complex natural frequencies

C@
jj
"2I(j4

j
). (14)

The error from representing v(
j
by the series sum (13) can be expressed as

e
j
"v(

j
!

m
+
k/1

B
kj
u(
k
. (15)

To minimize the error a Galerkin approach can be adopted. The undamped mode shapes u(
l
,

l"1,2, m, are taken as &&weighting functions''. Using the Galerkin method on e
j
3RN for

a "xed j one obtains

u( T
l
e
j
"0, l"1,2, m. (16)

Combining equations (15) and (16) yields

u( T
l Gv( j!

m
+
k/1

B
kj
u(
kH"0 or

m
+
k/1

=
lk
B

kj
"S

lj
, l"1,2,m (17)

with =
lk
"u( T

l
u(
k

and S
lj
"u( T

l
v(
j
. Since =

kl
is j-independent, for all j"1,2, m the above

equations can be combined in matrix form

WB"S, (18)

where B3Rm]m is the matrix of unknown coe$cients to be found, W"UK TUK 3Rm]m and
S"UK TVK 3Rm]m with

UK "[u(
1
, u(

2
,2, u(

m
]3RN]m, VK "[v

1
, v(

2
,2, v(

m
]3RN]m. (19)

Now, B can be obtained by carrying out the matrix inversion associated with equation (18)
as

B"W~1S"[UK TUK ]~1UK TV. (20)
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From the B matrix, the coe$cients of the modal damping matrix can be derived from

C@
kj
"

(u9 2
j
!u9 2

k
)B

kj
u9

j

, kOj. (21)

The above two equations together with equation (14) completely de"ne the modal damping
matrix C@3Rm]m. If UK 3RN]N is the complete undamped modal matrix then the damping
matrices in the modal co-ordinates and original co-ordinates are related by C@"UK TCUK .
Thus given C@, the damping matrix in the original co-ordinates can be easily obtained by the
inverse transformation as C"UT~1C@U~1. For the case when the full modal matrix is not
available, that is UK 3RN]m is not a square matrix, a pseudoinverse is required in order to
obtain the damping matrix in the original co-ordinates. The damping matrix in the original
co-ordinates is then given by

C"[(UK TUK )~1UK T]TC@[(UTUK )~1UT]. (22)

It is clear from the above equations that only the complex natural frequencies and mode
shapes are needed to obtain C. The method is very simple and does not require much
computational time. Another advantage is that neither the estimation of mass and sti!ness
matrices nor the full set of modal data is required to obtain an estimate of the full damping
matrix. Using a larger number of modes will of course produce better results with higher
spatial resolution. In summary, this procedure can be described by the following steps:

1. Measure a set of transfer functions H
ij
(u).

2. Choose the number m of modes to be retained in the study. Determine the complex
natural frequencies j4

j
and complex mode shapes z(

j
from the transfer functions, for all

j"1,2,m. Obtain the complex mode shape matrix ZK "[z(
1
, z(

2
,2, z

m
]3CN]m.

3. Estimate the &&undamped natural frequencies'' as u9
j
"R (j4

j
).

4. Set UK "R[ZK ] and VK "I[ZK ], and from these obtain W"UK TUK and S"UK TVK . Now
denote B"W~1S.

5. From the B matrix get C@
kj
"(u9 2

j
!u9 2

k
)B

kj
/u9

j
for kOj and C@

jj
"2I(j4

j
).

6. Finally, carry out the transformation C"[(UK TU)~1UK T]TC@[(UK TUK )~1UK T] to get the
damping matrix in physical coordinates.

It should be observed that even if the measured transfer functions are reciprocal, this
procedure does not necessarily yield a symmetric damping matrix. If indeed a non-
symmetric damping matrix is obtained then it may be deduced that the physical law behind
the damping mechanism in the structure is not viscous. This fact is illustrated by example in
the next section. Under those circumstances, if an accurate model for the damping in the
structure is needed then a non-viscous model of some kind must be "tted to the measured
data. Some examples of such models and algorithms for "tting them will be illustrated in the
companion paper [9].

4. NUMERICAL EXAMPLES

There is a major di!erence in emphasis between this study and other related studies on
damping identi"cation reported in the literature. Most of the methods assume from the
outset that the system is viscously damped (see the review paper by Pilkey and Inman [20])
and then formulate the theory to identify a viscous damping matrix. Here, it is intended to
investigate how much can be learnt by "tting a viscous damping model when the actual
system is non-viscously damped, as must be expected to be the case for most practical
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systems. It is far from clear in practice what kind of non-viscous damping behaviour
a system might exhibit. That question is deferred for the moment, and instead a system
which has a known non-viscous damping model is studied by simulation. Two di!erent
physically realistic non-viscous damping models are considered in this study. They are
applied to a system consisting of a linear array of spring-mass oscillators and dampers.

This simple system provides a useful basis to carry out numerical investigations. Complex
natural frequencies and modes can be calculated for the model system using the procedure
outlined by Woodhouse [6], then treated like experimental data obtained from a modal-
testing procedure, and used for identifying a viscous damping model by the procedure
described in the previous section. Note that in a true experimental environment the
measured complex natural frequencies and mode shapes will be contaminated by noise.
Since the simulation data are noise-free, the results obtained using them are &&ideal'', the best
that can be hoped for using this approach. Once promising algorithms have been identi"ed
in this way, the in#uence of noise in degrading the performance will have to be addressed.

Figure 1 shows the model systems. N masses, each of mass m
u
, are connected by springs of

sti!ness k
u
. The mass matrix of the system has the form M"m

u
I
N
, where I

N
is the N]N

identity matrix. The sti!ness matrix of the system is

K"k
u C

2 !1
!1 2 !1

} } }
!1 2 !1

} }
!1 2D . (23)

Certain of the masses of the system shown in Figure 1(a) have dissipative elements
connecting them to the ground. In this case, the damping force depends only on the absolute
motion of the individual masses. Such damping will be described as &&locally reacting'' by
analogy with usage in the theory of #uid-loaded structures (see, e.g., Crighton [21]). For the
system shown in Figure 1(b), by contrast, dissipative elements are connected between
certain adjacent pairs of masses. In this case, the damping force depends on the relative
motion of the two adjacent masses, and will be called &&non-locally reacting''.

The dissipative elements shown in Figure 1 will be taken to be linear, but not to be simple
viscous dashpots. For any such element, the force developed between the two ends will
depend on the history of the relative motion of the two ends. The dependence can be written
Figure 1. Linear array of N spring}mass oscillators, N"30, m
u
"1 Kg, k

u
"4]103 N/m.
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in terms of a convolution integral. Using the mass and the sti!ness matrices described
before, the equations of motion can thus be expressed in the form

MyK (t)#C1 P
t

~=

g (t!q)y5 (q) dq#Ky(t)"0, (24)

where g(t) is the damping function (assumed to have the same form for all the damping
elements in the system) and C1 is the associated coe$cient matrix which depends on the
distribution of the dampers. Two speci"c damping models will be considered, de"ned by
two di!erent forms of g (t):

f MODEL 1 (exponential):

g(1)(t)"k
1
e~k1t, t*0, (25)

f MODEL 2 (Gaussian):

g(2) (t)"2S
k
2

n
e~k2t

2, t*0, (26)

where k
1

and k
2

are constants. Any physically realistic damping model must satisfy
a condition of positive energy dissipation at all frequencies. A su$cient condition to
guarantee this, satis"ed by both models considered here, is described in the companion
paper [9].

It is convenient to normalize the functions to make comparisons between models
meaningful. Both functions have already been scaled so as to have unit area when integrated
to in"nity. This makes them directly comparable with the viscous model, in which the
corresponding damping function would be a unit delta function, g (t)"d(t), and the
coe$cient matrix C1 would be the usual damping matrix. It is also convenient to de"ne
a characteristic time constant h

j
for each damping function, via the "rst moment of g(j) (t):

h
j
"P

=

0

tg(j) (t) dt. (27)

For the two damping models considered here, evaluating the above integral gives h
1
"1/k

1
and h

2
"1/Jnk

2
. For viscous damping h

j
"0. The characteristic time constant of

a damping function gives a convenient measure of &&width'': if it is close to zero the damping
behaviour will be near-viscous, and vice versa. To establish an equivalence between the two
damping models they can be chosen to have the same time constant, so that 1/k

1
"1/Jnk

2
.

For the system with locally reacting damping shown in Figure 1(a), C1 "cI1 , where c is
a constant and I1 is a block identity matrix which is non-zero only between the s-th and
(s#l)th entries along the diagonal, so that s denotes the "rst damped mass and (s#l) the
last one. For the system with non-locally reacting damping shown in Figure 1(b), C1 has
a similar pattern to the sti!ness matrix given by equation (23), but non-zero only for terms
relating to the block between s and (s#l). For the numerical calculations considered here,
N"30, s"8 and (s#l)"17.

For the purpose of numerical examples, the values m
u
"1 kg, k

u
"4]105 N/m have

been used. The resulting undamped natural frequencies then range from near zero to
approximately 200 Hz. For damping models, the value c"25 has been used, and various
values of the time constant h have been tested. These are conveniently expressed as
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a fraction of the period of the highest undamped natural frequency:

h"c¹
min

. (28)

When c is small compared with unity the damping behaviour can be expected to be
essentially viscous, but when c is of order unity non-viscous e!ects should become
signi"cant.

The complex natural frequencies and mode shapes can now be calculated from the "rst
order perturbation expression given by Woodhouse [6] (also see section 2 of the companion
paper [9]). The steps outlined in the previous section can then be followed to obtain an
equivalent viscous damping which represents these &&measured'' data most accurately.

4.1. RESULTS FOR SMALL c

When c"0)02 both damping models should show near-viscous behaviour. First,
consider the system shown in Figure 1(a) with locally reacting damping. Figure 2 shows the
"tted viscous damping matrix C for damping model 2, calculated using the complete set of
30 modes. The "tted matrix identi"es the damping in the system very well. The high portion
of the plot corresponds to the spatial location of the dampers. The o!-diagonal terms of the
identi"ed damping matrix are very small compared to the diagonal terms, indicating
correctly that the damping is locally reacting.

It is useful to understand the e!ect of modal truncation on the damping identi"cation
procedure. In practice, it might be expected to be able to use only the "rst few modes of the
system to identify the damping matrix. Figures 3 and 4 show the "tted viscous damping
matrix using, respectively, the "rst 20 and the "rst 10 modes only. The quality of the "tted
damping matrix gradually deteriorates as the number of modes used to "t the damping
matrix is reduced, but still the identi"ed damping matrix shows a reasonable approximation
to the true behaviour. The spatial resolution of the identi"ed damping is limited by that of
the set of modes used, and some o!-diagonal activity is seen in the "tted matrix. Since for
this system the mode shapes are approximately sinusoidal, the e!ects of modal truncation
can be recognized as analogous to Gibbs' phenomenon in a truncated Fourier series.
Figure 2. Fitted viscous damping matrix for the local case, c"0)02, damping model 2.



Figure 3. Fitted viscous damping matrix using "rst 20 modes for the local case, c"0)02, damping model 2.

Figure 4. Fitted viscous damping matrix using "rst 10 modes for the local case, c"0)02, damping model 2.
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Now, consider the system shown in Figure 1(b) with non-locally reacting damping.
Figure 5 shows the "tted viscous damping matrix for damping model 2, using the full set of
modes. Again, the "tted matrix identi"es the damping in the system quite well. The high
portion of the plot corresponds to the spatial location of the dampers. The negative
o!-diagonal terms in the identi"ed damping matrix indicate that the damping is non-locally
reacting, and the pattern is recognizably that of equation (23). The extent of noise away
from the three diagonals is rather higher than was the case in Figure 2. This is not very
surprising. The pattern of terms along a row of the matrix corresponding to a damped
position was, in the former case, a discrete approximation to a delta function. In the latter
case it is an approximation to the second derivative of a delta function. The modal
expansion, approximately a Fourier series, will thus have a much larger contribution from
the higher modes, which are the "rst to be a!ected by the non-zero width of the damping
function. A higher level of noise is the inevitable result.



Figure 5. Fitted viscous damping matrix for the non-local case, c"0)02, damping model 2.

Figure 6. Modal Q-factors, c"0)02, damping model 2; (**), locally reacting damping; (} } }), non-locally
reacting damping.
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One consequence of the distinction between local and non-local damping is illustrated in
Figure 6. The modal Q-factors are plotted for the two cases studied, for the full set of 30
modes. Locally reacting damping (solid line) produces a Q-factor roughly proportional to
mode number. The particular non-local damping chosen here shows the opposite trend,
with Q-factors roughly inversely proportional to mode number (dashed line). Both trends
can be understood in terms of Rayleigh damping. If the damping extended over the entire
structure rather that being limited to a "nite patch, then the local-reacting damping would
correspond to a dissipation matrix proportional to the mass matrix, while the non-local
damping would correspond to a dissipation matrix proportional to the sti!ness matrix. The
trends of modal Q-factor with frequency would then be exactly proportional and inversely
proportional respectively. Limiting the damping to a part of the structure has evidently not
disturbed this pattern very much. The variation with frequency has translated into
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a variation with mode number: the mode number relates rather directly to wavenumber for
this simple system, and the physical origins of the di!erent trends of Q-factors are dependent
on wavelength, rather than on frequency as such.

When the "tting procedure is repeated using the alternative damping model of equation
(25) the results are su$ciently similar and are not reproduced here. Since the time constant
is so short, both damping models are near to viscous damping and the detailed di!erence in
their functional behaviour does not in#uence the results signi"cantly. In summary, it can be
said that when the time constant for a damping model is small the proposed identi"cation
method works quite well regardless of the functional form of the damping mechanism. The
spatial location of damping is revealed clearly, and also whether it is locally or non-locally
reacting. Modal truncation blurs the results, but does not invalidate the identi"cation
process.

4.2. RESULTS FOR LARGER c

When c is larger the two non-viscous damping models depart from the viscous damping
model, each in its own way. For the value c"0)5, Figure 7(a) shows the result of running
the "tting procedure for damping model 1 (equation (25)) with locally reacting damping and
the full set of modes, similar to Figure 2. Figure 7(b) shows the corresponding "tted viscous
damping matrix C for damping model 2 (equation (26)). In both cases it may be noted that
although we have started with a locally reacting damping model, which means the matrix is
non-zero only along the diagonal, the non-zero values in the o!-diagonal terms show that
the "tted viscous damping is, in a sense, not locally reacting. Nevertheless, the spatial
distribution of the damping is well identi"ed, and perhaps one might be able to guess that
the underlying mechanism was locally reacting from the fact that the signi"cantly non-zero
elements all have positive values, with a clear peak centered on the diagonal of the matrix.
This remark remains true even for larger values of c. Just one example is given: Figure 8
shows the "tted dissipation matrix for c"2. Most of the matrix elements are now
signi"cantly non-zero, but the pattern shows the same general features as Figure 7(a). The
high values, along the main diagonal of the matrix, still correctly identify the spatial
distribution of the damping.

Figures 9(a) and 9(b) show the "tted results corresponding to Figures 7(a) and 7(b), using
the non-local damping model. Similar remarks can be made as for the locally reacting case.
The spatial distribution of the damping is revealed quite clearly and correctly. The
non-local nature of the damping is hinted at by the strong negative values on either side of
the main diagonal of the matrix. In both cases, there is an obvious echo of the pattern seen
in Figure 5 and equation (23).

To give a di!erent insight into the behaviour of the various damping models it is useful to
see the pattern of modal damping factors. In Figure 10, the modal Q-factors are plotted for
the two damping models with c"0)5, in the local-reacting case. Figure 11 shows the
corresponding results for the non-locally reacting case. For locally reacting damping the
Q-factors rise with mode number, for both damping models. For the non-local case
the Q-factors fall initially. For damping model 1 and these particular parameter values the
Q-factors are then approximately constant, while for damping mode 2 they rise again after
a while, reaching very high values at high mode numbers. In terms of physical plausibility,
damping model 1 in the non-local con"guration gives the closest match to the common
practical experience that modal damping factors are approximately constant. However,
physical plausibility is not a major issue here, where the aim is to test the procedure under
a wide range of circumstances.



Figure 7. (a) Fitted viscous damping matrix for the local case, c"0)5, damping model 1. (b) Fitted viscous
damping matrix for the local case, c"0)5, damping model 2.
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To judge the numerical accuracy of the "tted viscous damping it is useful to reconstruct
transfer functions. It is easy to do this, by inverting the dynamic sti!ness matrix using the
"tted viscous damping matrix. A typical transfer function H

kj
(u), for k"11 and j"24 is

shown in Figure 12, based on locally reacting damping using damping model 1. It is clear
that the reconstructed transfer function agrees well with the original one. This is to be
expected: the "tting procedure outlined in the previous section is exact, within the
approximations of the small-damping perturbation theory, provided that the full set
of modes is used. The full set of poles and their residues are correctly reproduced*this
is the essential contrast between this approach and one which "ts only proportional
damping, for which the poles can be correct but the residues cannot (because they will be
real, not complex). This result has a far-reaching implication: an incorrect damping model
(the "tted viscous damping) with a di!erent spatial distribution from the true locally
reacting model can reproduce accurately the full set of transfer functions. This means that
by measuring transfer functions it is not possible to identify uniquely the governing
mechanism.



Figure 8. Fitted viscous damping matrix for the local case, c"2)0, damping model 1.

Figure 9. (a) Fitted viscous damping matrix for the non-local case, c"0)5, damping model 1. (b) Fitted viscous
damping matrix for the non-local case, c"0)5, damping model 2.
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Figure 10. Modal Q-factors for the local case, c"0)5; (**), model 1; (} } }), model 2.

Figure 11. Modal Q-factors for the non-local case, c"0)5; (**), model 1; (} } }), model 2.
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However, it should be noted that in all cases of Figures 7(a)}9(b) the "tted damping
matrix is not symmetric. This is, in some sense, a non-physical result. In view of this
non-symmetry, it is interesting to check the reciprocity of the transfer functions. In Figure
12, the reciprocal transfer function H

jk
(u) is also plotted, as a dashed line. It is not visible as

a separate line in the "gure, because it matches H
kj

(u) with good accuracy. This plot
demonstrates that the non-symmetry of the "tted viscous damping in the spatial co-
ordinate does not necessarily a!ect the reciprocity of the transfer functions. Instead,
non-symmetry of a "tted dissipation matrix should be regarded as evidence that the true
damping model is not viscous. To obtain a correct physical description of the damping,
a non-viscous model should be "tted instead. This idea is developed in the companion
paper [9].



Figure 12. Transfer functions for the local case, c"0)5, damping model 1, k"11, j"24; (**), exact H
kj

(u);
(} } }), "tted H

kj
(u); (}! }), "tted H

jk
(u).
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5. CONCLUSIONS

In this paper, a method has been proposed to identify a non-proportional viscous
damping matrix in vibrating systems. It is assumed that damping is light so that the "rst
order perturbation method is applicable. The method is simple, direct, and compatible with
conventional modal testing procedures. The complex modes and natural frequencies are
used, but the method does not require either the full set of modal data, nor any knowledge
of the mass and sti!ness matrices. The validity of the proposed method has been explored
by applying it to simulated data from a simple test problem, in which a linear array of
spring-mass oscillators is damped by non-viscous elements over part of its length.

Numerical experiments have been carried out with a wide range of parameter values and
di!erent damping models. The main features of the results have been illustrated by two
particular damping models and representative parameter values. It has been shown that the
method generally predicts the spatial location of the damping with good accuracy, and also
gives a good indication of whether the damping is locally reacting or not. Whatever be the
nature of the "tted damping matrix, the transfer functions obtained from the "tted viscous
damping agree well with the exact transfer functions of the simulated system. Reciprocity of
the transfer functions remains preserved within an acceptable accuracy although in some
cases the "tted viscous damping is not symmetric.

Symmetry breaking of the "tted viscous damping matrix depends on the value of the
characteristic time constant h of the damping model, de"ned by equation (27). When h is
short compared with the natural periods of the vibration, the damping is e!ectively viscous
and the "tting procedure gives a physically sensible symmetric matrix. When h is larger,
though, the memory of the damping function in#uences the detailed behaviour. Although
the poles and residues of the transfer functions can still be "tted accurately with a model of
viscous form, the underlying non-viscous behaviour manifests itself in a non-symmetrical
matrix. If a correct physical description of the damping mechanism is needed, then
a suitable non-viscous model must be selected and "tted. This question is taken up in the
companion paper [9].
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APPENDIX A: NOMENCLATURE

C viscous damping matrix
C@ viscous damping matrix in the modal coordinates
C1 coe$cient matrix associated with the non-viscous damping functions
g(j)(t) non-viscous damping functions
H

ij
(u) set of measured transfer functions

K sti!ness matrix
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M mass matrix
N degrees-of-freedom of the system
m number of measured modes
Q

j
Q-factor for the jth mode

t time
¹
min

minimum time period for the system
x
j

jth undamped mode
X matrix containing x

j
y(t) vector of generalized co-ordinates
z
j

jth complex mode
z;
j

jth measured complex mode
UK matrix containing z;

ju;
j

real part of z;
jUK matrix containing u;

j
v;
j

imaginary part of z;
jVK matrix containing v;
ju

j
jth undamped natural frequency

j
j

jth complex natural frequency of the system
e
j

error vector associated with the jth complex mode
a(j)
l

constants associated with expansion of the jth elastic modes
f
j

jth modal damping factor
k
1

constant associated with exponential damping function
k
2

constant associated with Gaussian damping function
h characteristic time constant
c non-dimensional characteristic time constant
d(t) Dirac delta function
C space of complex numbers
R space of real numbers
R(f) real part of (f)
I(f) imaginary part of (f)
(f( ) estimated value of (f)
(f)T matrix transpose of (f)
(f)~1 matrix inverse of (f)
(f5 ) derivative of (f) with respect to t
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